Analyzing Big Data with Dynamic Quantum Clustering

Download Now
Provided by: Cornell University
Topic: Big Data
Format: PDF
How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift - away from hypothesis driven searches of the data - towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a methodology. DQC is a powerful visual method that works with big, high-dimensional data. It exploits variations of the density of the data (in feature space) and unearths subsets of the data that exhibit correlations among all the measured variables.
Download Now

Find By Topic