Association Rule Generation in Data Streams Using FP-Growth and APRIORI MR Algorithms

Data stream is used for handling dynamic databases in which data can be arrived continuously, limitless and its size are very large. This situation has created a problem, i.e. to perform the mining process in these database, the existing data mining algorithms are not suitable. In order to perform mining task in data streams there is a need for development of new algorithms and techniques. By using this new algorithms and techniques the authors can able to perform various data mining tasks, i.e. clustering, classification, frequent pattern mining and association rule mining in data streams.

Provided by: The International Journal of Innovative Research in Computer and Communication Engineering Topic: Big Data Date Added: Sep 2015 Format: PDF

Find By Topic