Building Blocks for Exploratory Data Analysis Tools

Data exploration is largely manual and labor intensive. Although there are various tools and statistical techniques that can be applied to data sets, there is little help to identify what questions to ask of a data set, let alone what domain knowledge is useful in answering the questions. In this paper, the authors study user queries against production data sets in Splunk. They specifically characterize the interplay between data sets and the operations used to analyze them using latent semantic analysis, and discuss how this characterization serves as a building block for a data analysis recommendation system.

Provided by: Association for Computing Machinery Topic: Data Management Date Added: Jun 2013 Format: PDF

Find By Topic