Efficient Feature Subset Selection Techniques for High Dimensional Data

Download Now
Provided by: The International Journal of Innovative Research in Computer and Communication Engineering
Topic: Big Data
Format: PDF
A database can contain several dimensions or attributes. Many clustering methods are designed for clustering low - dimensional data. In high dimensional space finding clusters of data objects is challenging due to the curse of dimensionality. When the dimensionality increases, data in the irrelevant dimensions may produce much noise and mask the real clusters to be discovered. To deal with these problems, an efficient feature subset selection technique for high dimensional data has been proposed. Feature subset selection reduces the data size by removing irrelevant or redundant attributes.
Download Now

Find By Topic