Efficient Mapping of Dimensionality Reduction Designs onto Heterogeneous FPGAs

Provided by: Institute of Electrical & Electronic Engineers
Topic: Hardware
Format: PDF
Dimensionality reduction or feature extraction has been widely used in applications that require to reduce the amount of original data, like in image compression, or to represent the original data by a small set of variables that capture the main modes of data variation, as in face recognition and detection applications. A linear projection is often chosen due to its computational attractiveness. The calculation of the linear basis that best explains the data is usually addressed using the Karhunen-Loeve Transform (KLT). Moreover, for applications where real-time performance and flexibility to accommodate new data are required, the linear projection is implemented in FPGAs due to their fine-grain parallelism and reconfigurability properties.

Find By Topic