Enhancing Traditional Text Documents Clustering Based on Ontology

Ontologies currently are a hot topic in the areas of Semantic Web. The current clustering research emphasizes the development of a more efficient clustering method and mainly focuses on term weight calculation without considering the domain knowledge. This paper investigates how ontologies can also be applied to the clustering process. To complement the traditional clustering method, more informative features including concept weight are important based on recent developments in the area of the Semantic technologies. The proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weighted values.

Provided by: International Journal of Computer Applications Topic: Big Data Date Added: Nov 2011 Format: PDF

Find By Topic