Feedback-Driven Multiclass Active Learning for Data Streams

Download Now
Provided by: Association for Computing Machinery
Topic: Big Data
Format: PDF
Active learning is a promising way to efficiently build up training sets with minimal supervision. Most existing methods consider the learning problem in a pool-based setting. However, in a lot of real-world learning tasks, such as crowd-sourcing, the unlabeled samples arrive sequentially in the form of continuous rapid streams. Thus, preparing a pool of unlabeled data for active learning is impractical. Moreover, performing exhaustive search in a data pool is expensive, and therefore unsuitable for supporting on-the-fly interactive learning in large scale data.
Download Now

Find By Topic