Finding Lower Bounds on the Complexity of Secret Sharing Schemes by Linear Programming

Optimizing the maximum, or average, length of the shares in relation to the length of the secret for every given access structure is a difficult and long-standing open problem in cryptology. Most of the known lower bounds on these parameters have been obtained by implicitly or explicitly using that every secret sharing scheme defines a polymatroid related to the access structure. The best bounds that can be obtained by this combinatorial method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants.

Provided by: Nanyang Technological University Topic: Security Date Added: Aug 2012 Format: PDF

Find By Topic