Generalized Chernoff Information for Mismatched Bayesian Detection and Its Application to Energy Detection

Provided by: Institute of Electrical & Electronic Engineers
Topic: Mobility
Format: PDF
In this paper, the performance of mismatched likelihood ratio detectors for binary Bayesian hypothesis testing problems is considered. Based on large deviation theory, a method for achieving the maximum Bayesian error exponent for a mismatched likelihood ratio detector is presented. It is shown that the maximum Bayesian error exponent is given by generalized Chernoff information, which is an extension of the Chernoff information to the case of two mismatched distributions and has similar properties to those of the original Chernoff information. As an application example, energy detection under the Gauss - Markov signal model, is considered.

Find By Topic