Geometric Mean based Boosting Algorithm to Resolve Data Imbalance Problem

Data imbalance problem has received a lot of attention in machine learning community because it is one of the causes that degrade the performance of classifiers or predictors. In this paper, the authors propose Geometric Mean based boosting algorithm (GM-Boost) to resolve the data imbalance problem. GM-Boost enables learning with consideration of both majority and minority classes because it uses the geometric mean of both classes in error rate and accuracy calculation. They have applied GM-Boost to bankruptcy prediction task. The results indicate that GM-Boost has the advantages of high prediction power and robust learning capability in imbalanced data as well as balanced data distribution.

Provided by: IARIA Topic: Data Management Date Added: Jan 2013 Format: PDF

Find By Topic