Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis

Download Now
Provided by: Association for Computing Machinery
Topic: Cloud
Format: PDF
To better understand the challenges in developing effective cloud-based resource schedulers, the authors analyze the first publicly available trace data from a sizable multi-purpose cluster. The most notable workload characteristic is heterogeneity: in resource types (e.g., cores: RAM per machine) and their usage (e.g., duration and resources needed). Such heterogeneity reduces the effectiveness of traditional slot- and core-based scheduling. Furthermore, some tasks are constrained as to the kind of machine types they can use, increasing the complexity of resource assignment and complicating task migration.
Download Now

Find By Topic