Intersection of HPC and Machine Learning

Historically, numerical analysis has formed the backbone of supercomputing for decades by applying mathematical models of first-principle physics to simulate the behavior of systems from subatomic to galactic scale. Recently, scientists have begun experimenting with a relatively new approach to understand complex systems using machine learning (ML) predictive models, primarily Deep Neural Networks (DNN), trained by the virtually unlimited data sets produced from traditional analysis and direct observation. Early results indicate that these “synthesis models,” combining ML and traditional simulation, can improve accuracy, accelerate time to solution and significantly reduce costs.

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Resource Details

NVIDIA Corporation logo
Provided by:
NVIDIA Corporation
Topic:
Software
Format:
PDF