Large-Scale Spectral Clustering on Graphs

Download Now
Provided by: University of Illinois at Urbana Champaign
Topic: Big Data
Format: PDF
Graph clustering has received growing attention in recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly more challenging to identify clusters. In this paper, the authors propose an efficient clustering algorithm for large-scale graph data using spectral methods. The key idea is to repeatedly generate a small number of \"Supernodes\" connected to the regular nodes, in order to compress the original graph into a sparse bipartite graph.
Download Now

Find By Topic