Learning and Sharing in a Changing World: Non-Bayesian Restless Bandit With Multiple Players

The authors consider decentralized restless multi-armed bandit problems with unknown dynamics and multiple players. The reward state of each arm transits according to an unknown Markovian rule when it is played and evolves according to an arbitrary unknown random process when it is passive. Players activating the same arm at the same time collide and suffer from reward loss. The objective is to maximize the long-term reward by designing a decentralized arm selection policy to address unknown reward models and collisions among players. A decentralized policy is constructed that achieves a regret with logarithmic order when an arbitrary nontrivial bound on certain system parameters is known.

Provided by: University of California Topic: Mobility Date Added: Jan 2012 Format: PDF

Find By Topic