Lossless Data Compression at Finite Blocklengths

This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless compression with and without prefix constraints are shown to be tightly coupled. Several precise, quantitative bounds are derived, connecting the distribution of the optimal code lengths to the source information spectrum, and an exact analysis of the best achievable rate for arbitrary sources is given. Fine asymptotic results are proved for arbitrary (not necessarily prefix) compressors on general mixing sources. Non-asymptotic, explicit Gaussian approximation bounds are established for the best achievable rate on Markov sources. The source dispersion and the source varentropy rate are defined and characterized.
Provided by: Athens University of Economics and Business Topic: Networking Date Added: Dec 2012 Format: PDF

Find By Topic