Managing Communication Latency-Hiding at Runtime for Parallel Programming Languages and Libraries

This paper introduces a runtime model for managing communication with support for latency-hiding. The model enables non-computer science researchers to exploit communication latency-hiding techniques seamlessly. For compiled languages, it is often possible to create efficient schedules for communication, but this is not the case for interpreted languages. By maintaining data dependencies between scheduled operations, it is possible to aggressively initiate communication and lazily evaluate tasks to allow maximal time for the communication to finish before entering a wait state. The authors implement a heuristic of this model in DistNumPy, an auto-parallelizing version of numerical Python that allows sequential NumPy programs to run on distributed memory architectures.

Provided by: Cornell University Topic: Software Date Added: Jan 2012 Format: PDF

Find By Topic