Modeling Virtualized Applications Using Machine Learning Techniques

With the growing adoption of virtualized datacenters and cloud hosting services, the allocation and sizing of resources such as CPU, memory, and I/O bandwidth for Virtual Machines (VMs) is becoming increasingly important. Accurate performance modeling of an application would help users in better VM sizing, thus reducing costs. It can also benefit cloud service providers who can offer a new charging model based on the VMs' performance instead of their configured sizes. In this paper, the authors present techniques to model the performance of a VM-hosted application as a function of the resources allocated to the VM and the resource contention it experiences.
Provided by: Association for Computing Machinery Topic: Virtualization Date Added: Mar 2012 Format: PDF

Find By Topic