Multi-Instance Learning Based Web Mining

In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. In this paper, a web mining problem, i.e. web index recommendation, is investigated from a multi-instance view. In detail, each web index page is regarded as a bag, while each of its linked pages is regarded as an instance. A user favoring an index page means that he or she is interested in at least one page linked by the index.

Provided by: Nanjing University Topic: Big Data Date Added: Mar 2009 Format: PDF

Find By Topic