Novel Cascade FPGA Accelerator for Support Vector Machines Classification

Provided by: Institute of Electrical & Electronic Engineers
Topic: Hardware
Format: PDF
Support Vector Machines (SVMs) are a powerful machine learning tool, providing state-of-the-art accuracy to many classification problems. However, SVM classification is a computationally complex task, suffering from linear dependencies on the number of the support vectors and the problem's dimensionality. This paper presents a fully scalable Field Programmable Gate Array (FPGA) architecture for the acceleration of SVM classification, which exploits the device heterogeneity and the dynamic range diversities among the dataset attributes. An adaptive and fully-customized processing unit is proposed, which utilizes the available heterogeneous resources of a modern FPGA device in efficient way with respect to the problem's characteristics.

Find By Topic