Offline Signature Recognition Using Modular Neural Networks With Fuzzy Response Integration

This paper presents a new offline signature recognition system based on Modular Neural Networks (MNN) and fuzzy inference system. The proposed MNN consists of three different modules, each using different image features as input, these are: edge detection, curvelet transform, and the Hough transform. The Mamdani fuzzy inference system is then used to combine the outputs from each of these modules. The experimental results obtained by using a data base of 30 individuals' signatures show that the proposed modular architecture can achieve very high 96.6% recognition accuracy with a small test set of 60 images.

Provided by: International Association of Computer Science & Information Technology (IACSIT) Topic: Security Date Added: Jan 2012 Format: PDF

Find By Topic