Offline Signature Verification Using FMCN with GA based Optimization of Features

In recent years, along with extraordinary diffusion of internet and growing need of personal identification in many applications, signature verification is considered with interest. This paper proposed an offline signature verification method based on genetic algorithm and fuzzy min max neural network classifier with compensatory neuron. The proposed method is basically consists of two steps. At first step optimizing the features using genetic algorithm, and at second step signature recognition is done using fuzzy min max neural network classifier with compensatory neurons. The sample of signatures is used to represent a particular person. The sample signature is first preprocessed, and then features of the processed signature are extracted by using Krawtchouk moment.

Provided by: International Journal of Computer Applications Topic: Security Date Added: Sep 2012 Format: PDF

Find By Topic