P2G: A Framework for Distributed Real-Time Processing of Multimedia Data

The computational demands of multimedia data processing are steadily increasing as consumers call for progressively more complex and intelligent multimedia services. New multi-core hardware architectures provide the required resources, but writing parallel, distributed applications remains a labor-intensive task compared to their sequential counter-part. For this reason, Google and Microsoft implemented their respective processing frameworks MapReduce and Dryad, as they allow the developer to think sequentially, yet benefit from parallel and distributed execution. An inherent limitation in the design of these batch processing frameworks is their inability to express arbitrarily complex workloads. The dependency graphs of the frameworks are often limited to directed acyclic graphs, or even pre-determined stages. This is particularly problematic for video encoding and other algorithms that depend on iterative execution.

Provided by: University of Orleans Topic: Software Date Added: Jun 2011 Format: PDF

Find By Topic