Parallel Hyperspectral Image Processing on Distributed Multicluster Systems

Computationally efficient processing of hyperspectral image cubes can be greatly beneficial in many application domains, including environmental modeling, risk/hazard prevention and response, and defense/security. As individual cluster computers often cannot satisfy the computational demands of emerging problems in hyperspectral imaging, there is a growing need for distributed supercomputing using multicluster systems. A well-known manner of obtaining speedups in hyperspectral imaging is to apply data parallel approaches, in which commonly used data structures (e.g., the image cubes) are being scattered among the available compute nodes.

Provided by: SpiDoL Games Topic: Big Data Date Added: Nov 2011 Format: PDF

Find By Topic