Performance Enhancement of K-Means Clustering Algorithms for High Dimensional Data sets

Data mining has been defined as \"The nontrivial extraction of implicit, previously unknown, and potentially useful information from data\". Clustering is the automated search for group of related observations in a data set. The K-means method is one of the most commonly used clustering techniques for a variety of applications. This paper proposes a method for making the K-means algorithm more effective and efficient; so as to get better clustering with reduced complexity. In this paper, the most delegate algorithms K-means and enhanced K-means were examined and analyzed based on their basic approach.

Provided by: International Journal of Advanced Research in Computer Science and Software Engineering (IJARCSSE) Topic: Data Management Date Added: Jan 2014 Format: PDF

Find By Topic