Performance Modeling of Distributed Load Balancing Algorithm Using Neural Networks

This paper presents a new approach that uses neural networks to predict the performance of a number of dynamic decentralized load balancing strategies. A distributed multicomputer system using any distributed load balancing strategy is represented by a unified analytical queuing model. A large simulation data set is used to train a neural network using the back - propagation learning algorithm based on gradient descent. The performance model using the predicted data from the neural network produces the average response time of various load balancing algorithms under various system parameters. The validation and comparison with simulation data show that the neural network is very effective in predicting the performance of dynamic load balancing algorithms.

Provided by: International Journal of Computer Science and Telecommunications Topic: Software Date Added: Jan 2012 Format: PDF

Find By Topic