Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure

Recent advancements in data-intensive computing for science discovery are fueling a dramatic growth in use of data-intensive iterative computations. The utility computing model introduced by cloud computing combined with the rich set of cloud infrastructure services offers a very attractive environment for scientists to perform such data intensive computations. The challenges to large scale distributed computations on clouds demand new computation frameworks that are specifically tailored for cloud characteristics in order to easily and effectively harness the power of clouds. Twister4Azure is a distributed decentralized iterative MapReduce runtime for Windows Azure Cloud. It extends the familiar, easy-to-use MapReduce programming model with iterative extensions, enabling a wide array of large-scale iterative data analysis for scientific applications on Azure cloud.

Provided by: Indiana University Topic: Cloud Date Added: Aug 2011 Format: PDF

Find By Topic