Question Classification using Multiple Kernel Learning and Semantic Information

Question Classification is an important stage in Question Answering, and it has been a hot topic in the field of Information Retrieval in recent years. In this paper the authors explore the role of semantic features and propose two separate tree kernel functions incorporating the semantic features into the Support Vector Machine model. Then Multiple Kernel Learning approach is proposed to combine the two kernels and gather their advantages together. Experimental results show that using the method proposed in this paper is very effective and the accuracy reaches 95.8% which significantly outperforms the state-of-the-art approaches.

Provided by: Academy Publisher Topic: Data Management Date Added: Nov 2011 Format: PDF

Find By Topic