Refactoring Intermediately Executed Code to Reduce Cache Capacity Misses

Provided by: Ghent University
Topic: Hardware
Format: PDF
The growing memory wall requires that more attention is given to the data cache behavior of programs. In this paper, attention is given to the capacity misses i.e. the misses that occur because the cache size is smaller than the data footprint between the use and the reuse of the same data. The data footprint is measured with the reuse distance metric, by counting the distinct memory locations accessed between use and reuse. For reuse distances larger than the cache size, the associated code needs to be refactored in a way that reduces the reuse distance to below the cache size so that the capacity misses are eliminated.

Find By Topic