Software Defect Prediction Using Adaptive Neural Networks

Provided by: International Journal of Applied Information Systems (IJAIS)
Topic: Data Management
Format: PDF
The authors present a system which gives prior idea about the defective module. The task is accomplished using Adaptive Resonance Neural Network (ARNN), a special case of unsupervised learning. A vigilance parameter in ARNN defines the stopping criterion and hence helps in manipulating the accuracy of the trained network. To demonstrate the usefulness of ARNN, they used dataset from This dataset contains 121 modules out of which 112 are not defected and 9 are defected. In this dataset modules are termed as defected on the basis of three measures that are loc, halstead, mccabe measures that have been normalized in the range of 0-1.

Find By Topic