Statistical Analysis of Wsn Based Indoor Positioning Localization Schemes with Kalman Filtering

Wireless Sensor Network (WSN) is used for determining the Indoor Positioning of objects and persons since recent years. WSN has been implemented in indoor positioning applications such as real time tracking of humans/objects, patient monitoring in health care, navigation, warehouses for inventory monitoring, shopping malls, etc. But one of the problems while implementing WSN in Indoor positioning system is to ensure more coverage large number of sensors must be deployed which increases the installation cost. So in this paper, the authors have used MATLAB GUI named Sensor Network Localization Explorer to analyze the impact of node density on indoor positioning localization schemes.

Provided by: Interscience Open Access Journals Topic: Mobility Date Added: Dec 2012 Format: PDF

Find By Topic