When Homomorphism Becomes a Liability

The authors show that an encryption scheme cannot have a simple decryption function and be homomorphic at the same time, even with added noise. Specifically, if a scheme can homomorphically evaluate the majority function, then its decryption cannot be weakly-learnable (in particular, linear), even if large decryption error is allowed. (In contrast, without homomorphism, such schemes do exist and are presumed secure, e.g. based on LPN.) An immediate corollary is that known schemes that are based on the hardness of decoding in the presence of low hamming-weight noise cannot be fully homomorphic. This applies to known schemes such as LPN-based symmetric or public key encryption.

Provided by: Stanford Technology Ventures Program Topic: Security Date Added: Aug 2012 Format: PDF

Find By Topic