Zero-Knowledge Proofs with Low Amortized Communication from Lattice Assumptions

The authors construct zero-knowledge Proofs of Plaintext Knowledge (PoPK) and correct multiplication (PoPC) for the Regev encryption scheme with low amortized communication complexity. Previous constructions of both PoPK and PoPC had communication cost linear in the size of the public key (roughly quadratic in the lattice dimension, ignoring logarithmic factors). Furthermore, previous constructions of PoPK suffered from one of the following weaknesses: either the message and randomness space were restricted, or there was a super-polynomial gap between the size of the message and randomness that an honest prover chose and the size of which an accepting verifier would be convinced. The latter weakness was also present in the existent PoPC protocols.

Provided by: Aarhus University Topic: Security Date Added: Jun 2012 Format: PDF

Find By Topic