Implementation of Back Propagation Algorithm Using MATLAB

Artificial Neural Network (ANN) are highly interconnected and highly parallel systems. Back Propagation is a common method of training artificial neural networks so as to minimize objective function. This paper describes the implementation of back propagation algorithm. The error generated at the output is fed back to the input and weights of the neurons are updated by supervised learning and it is a generalization of delta rule. The sigmoid function is used as a activation function. The design is simulated using MATLAB R2008a version. Maximum accuracy has been achieved.

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Resource Details

Provided by:
Kurukshetra University
Topic:
Software
Format:
PDF