Rank Metric Convolutional Codes for Random Linear Network Coding

Random Linear Network Coding (RLNC) currently attracts a lot of attention as a technique to disseminate information in a network. In this contribution, non-coherent multi-shot RLNC is considered, that means, the unknown and time variant network is used several times. In order to create dependencies between the different shots, convolutional network codes are used, in particular Partial Unit Memory (PUM) codes. Such PUM codes based on rank metric block codes are constructed and it is shown how they can efficiently be decoded when errors, erasures and deviations occur. The decoding complexity of this algorithm is cubic with the length. Further, it is described how lifting of these codes can be applied for error correction in RLNC.

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Subscribe to the Developer Insider Newsletter

From the hottest programming languages to commentary on the Linux OS, get the developer and open source news and tips you need to know. Delivered Tuesdays and Thursdays

Resource Details

Provided by:
Institute of Electrical & Electronic Engineers
Topic:
Networking
Format:
PDF