TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
The Graphics Processing Unit (GPU) is now commonly used for graphics and data-parallel computing. As more and more applications tend to accelerate on the GPU in multi-tasking environments where multiple tasks access the GPU concurrently, operating systems must provide prioritization and isolation capabilities in GPU resource management, particularly in real-time setups. The authors present TimeGraph, a real-time GPU scheduler at the device-driver level for protecting important GPU workloads from performance interference. TimeGraph adopts a new event-driven model that synchronizes the GPU with the CPU to monitor GPU commands issued from the user space and control GPU resource usage in a responsive manner.