When Polyhedral Transformations Meet SIMD Code Generation

Data locality and parallelism are critical optimization objectives for performance on modern multi-core machines. Both coarse-grain parallelism (e.g., multi-core) and fine-grain parallelism (e.g., vector SIMD) must be effectively exploited, but despite decades of progress at both ends, current compiler optimization schemes that attempt to address data locality and both kinds of parallelism often fail at one of the three objectives. The authors address this problem by proposing a 3-step framework, which aims for integrated data locality, multi-core parallelism and SIMD execution of programs.

Subscribe to the Innovation Insider Newsletter

Catch up on the latest tech innovations that are changing the world, including IoT, 5G, the latest about phones, security, smart cities, AI, robotics, and more. Delivered Tuesdays and Fridays

Subscribe to the Innovation Insider Newsletter

Catch up on the latest tech innovations that are changing the world, including IoT, 5G, the latest about phones, security, smart cities, AI, robotics, and more. Delivered Tuesdays and Fridays

Resource Details

Provided by:
Association for Computing Machinery
Topic:
Hardware
Format:
PDF